extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C4×Dic7) = C24.2D14 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C22 | 112 | | C2^2.1(C4xDic7) | 448,84 |
C22.2(C4×Dic7) = (C2×C28).Q8 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C22 | 112 | 4 | C2^2.2(C4xDic7) | 448,90 |
C22.3(C4×Dic7) = M4(2)⋊Dic7 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C22 | 224 | | C2^2.3(C4xDic7) | 448,111 |
C22.4(C4×Dic7) = M4(2)⋊4Dic7 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C22 | 112 | 4 | C2^2.4(C4xDic7) | 448,116 |
C22.5(C4×Dic7) = C28.5C42 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C22 | 224 | | C2^2.5(C4xDic7) | 448,531 |
C22.6(C4×Dic7) = M4(2)×Dic7 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C22 | 224 | | C2^2.6(C4xDic7) | 448,651 |
C22.7(C4×Dic7) = C28.7C42 | φ: C4×Dic7/C2×Dic7 → C2 ⊆ Aut C22 | 224 | | C2^2.7(C4xDic7) | 448,656 |
C22.8(C4×Dic7) = C24.D14 | φ: C4×Dic7/C2×C28 → C2 ⊆ Aut C22 | 112 | | C2^2.8(C4xDic7) | 448,83 |
C22.9(C4×Dic7) = C28.(C4⋊C4) | φ: C4×Dic7/C2×C28 → C2 ⊆ Aut C22 | 224 | | C2^2.9(C4xDic7) | 448,87 |
C22.10(C4×Dic7) = (C2×C56)⋊C4 | φ: C4×Dic7/C2×C28 → C2 ⊆ Aut C22 | 112 | 4 | C2^2.10(C4xDic7) | 448,113 |
C22.11(C4×Dic7) = C4×C4.Dic7 | φ: C4×Dic7/C2×C28 → C2 ⊆ Aut C22 | 224 | | C2^2.11(C4xDic7) | 448,456 |
C22.12(C4×Dic7) = C28.12C42 | φ: C4×Dic7/C2×C28 → C2 ⊆ Aut C22 | 224 | | C2^2.12(C4xDic7) | 448,635 |
C22.13(C4×Dic7) = C8×C7⋊C8 | central extension (φ=1) | 448 | | C2^2.13(C4xDic7) | 448,10 |
C22.14(C4×Dic7) = C42.279D14 | central extension (φ=1) | 448 | | C2^2.14(C4xDic7) | 448,11 |
C22.15(C4×Dic7) = C56⋊C8 | central extension (φ=1) | 448 | | C2^2.15(C4xDic7) | 448,12 |
C22.16(C4×Dic7) = (C2×C28)⋊3C8 | central extension (φ=1) | 448 | | C2^2.16(C4xDic7) | 448,81 |
C22.17(C4×Dic7) = (C2×C56)⋊5C4 | central extension (φ=1) | 448 | | C2^2.17(C4xDic7) | 448,107 |
C22.18(C4×Dic7) = C2×C4×C7⋊C8 | central extension (φ=1) | 448 | | C2^2.18(C4xDic7) | 448,454 |
C22.19(C4×Dic7) = C2×C42.D7 | central extension (φ=1) | 448 | | C2^2.19(C4xDic7) | 448,455 |
C22.20(C4×Dic7) = C2×C8×Dic7 | central extension (φ=1) | 448 | | C2^2.20(C4xDic7) | 448,632 |
C22.21(C4×Dic7) = C2×C56⋊C4 | central extension (φ=1) | 448 | | C2^2.21(C4xDic7) | 448,634 |
C22.22(C4×Dic7) = C2×C14.C42 | central extension (φ=1) | 448 | | C2^2.22(C4xDic7) | 448,742 |